Full Text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The paper discusses a formation of Mt–PAA composite containing a natural montmorillonite structure partially exfoliated by poly(acrylic acid) introduced through intercalation polymerization of acrylic acid. Mt–PAA was subsequently modified by controlled adsorption of Co2+ ions. The presence of aluminosilicate packets (clay) and carboxyl groups (hydrogel) led to the deposition of significant amounts of Co2+ ions, which after calcination formed the Co3O4 spinel particles. The conditions of the Co2+ ions’ deposition (pH, volume and concentration of Co(NO3)2 solution, as well as a type of pH-controlling agent) were widely varied. Physicochemical characterization of the prepared materials (including X-ray fluorescence (XRF), X-ray powder diffraction (XRD), low-temperature nitrogen adsorption, X-ray photoelectron spectroscopy (XPS) and temperature-programmed reduction (H2-TPR)) revealed that the modification conditions strongly influenced the content as well as the distribution of the Co3O4 active phase, tuning its reducibility. The latter parameter was, in turn, very important from the point of view of catalytic activity in the combustion of aromatic volatile organic compounds (VOCs) following the Mars–van Krevelen mechanism.

Details

Title
In Search of Factors Determining Activity of Co3O4 Nanoparticles Dispersed in Partially Exfoliated Montmorillonite Structure
Author
Rokicińska, Anna  VIAFID ORCID Logo  ; Berniak, Tomasz  VIAFID ORCID Logo  ; Drozdek, Marek  VIAFID ORCID Logo 
First page
3288
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
14203049
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2539957140
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.