Full Text

Turn on search term navigation

© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Security is considered a critical issue in the deployment of 5G networks because of the vulnerability of information that can be intercepted by eavesdroppers in wireless transmission environments. Thus, physical layer security has emerged as an alternative for the secure enabling of 5G technologies and for tackling this security issue. In this paper, we study the secrecy energy efficiency (SEE) in a downlink underlying cognitive radio (CR)—non-orthogonal multiple access (NOMA) system with a cooperative relay. The system has an energy-harvesting (EH) user and an eavesdropper, where the transmitter provides direct communication with a close secondary user and a distant secondary user via the relay. Our objective is to maximize the SEE of the CR-NOMA system under the constraints of a minimum information rate for the secondary users, a minimum amount of energy harvested by the EH user, and maximum power availability at the transmitter and the relay that still prevents them from causing unacceptable interference with the primary user. The proposed solution to maximize the SEE is based on the low-computational—complexity particle swarm optimization (PSO) algorithm. For validation purposes, we compare the optimization outcomes obtained by the PSO algorithm with the optimal exhaustive search method. Furthermore, we compare the performance of our proposed CR-NOMA scheme with the conventional orthogonal multiple access (OMA) scheme.

Details

Title
Secrecy Energy Efficiency Maximization in an Underlying Cognitive Radio–NOMA System with a Cooperative Relay and an Energy-Harvesting User
Author
Garcia, Carla E  VIAFID ORCID Logo  ; Camana, Mario R  VIAFID ORCID Logo  ; Koo, Insoo  VIAFID ORCID Logo 
First page
3630
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2407669459
Copyright
© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.