Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Current methodologies for insulator defect detection are hindered by limitations in real-world applicability, spatial constraints, high computational demand, and segmentation challenges. Addressing these shortcomings, this paper presents a robust fast detection algorithm combined segmentation head networks with harnessing self-attention and transformer (HST-Net), which is based on the You Only Look Once (YOLO) v5 to recognize and assess the extent and types of damage on the insulator surface. Firstly, the original backbone network is replaced by the transformer cross-stage partial (Transformer-CSP) networks to enrich the network’s ability by capturing information across different depths of network feature maps. Secondly, an insulator defect segmentation head network is presented to handle the segmentation of defect areas such as insulator losses and flashovers. It facilitates instance-level mask prediction for each insulator object, significantly reducing the influence of intricate backgrounds. Finally, comparative experiment results show that the positioning accuracy and defect segmentation accuracy of the proposed both surpass that of other popular models. It can be concluded that the proposed model not only satisfies the requirements for balance between accuracy and speed in power facility inspection, but also provides fresh perspectives for research in other defect detection domains.

Details

Title
Segmentation Head Networks with Harnessing Self-Attention and Transformer for Insulator Surface Defect Detection
Author
Guo, Jun 1 ; Li, Tiancheng 1 ; Du, Baigang 1   VIAFID ORCID Logo 

 School of Mechanical and Electronic Engineering, Wuhan University of Technology, Wuhan 430070, China; [email protected] (J.G.); [email protected] (T.L.); Hubei Digital Manufacturing Key Laboratory, Wuhan 430070, China 
First page
9109
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2856796396
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.