Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Magnetic cell sorting technology stands out because of its speed, simplicity, and ability to process large cell numbers. However, it also suffers from a number of drawbacks, in particular low discrimination power, which results in all-or-none selection outcomes limited to a bulk separation of cell populations into positive and negative fractions, as well as the modest purity of the selected cells and the inability to select subpopulations of cells with high expression of a surface marker. In the present study, we developed a simple solution to this problem and confirmed the effectiveness of this approach by multiple experiments with the magnetic selection of transduced cell populations. Murine NIH 3T3 cells were transduced with the bicistronic retroviral vector constructs co-expressing fluorescent reporter proteins EGFP (enhanced green fluorescent protein) or DsRed-Express 2 and LNGFR (low-affinity nerve growth factor receptor) as surface selection markers. The effects of the magnetic selection of transduced cells with anti-LNGFR Micro Bead (MB) doses ranging from 0.5 to 80 µL have been assessed. Low doses of MBs favored the depletion of weakly positive cells from the population, resulting in the higher expression levels of EGFP or DsRed-Express2 reporters in the selected cell fractions. Low MB doses also contributed to the increased purity of the selected population, even for samples with a low initial percentage of positive cells. At the same time, high MB doses resulted in the increased yield and a more faithful representation of the original expression profiles following selection. We further demonstrate that for populations with fairly narrow distribution of expression levels, it is possible to achieve separation into high- and low-expressing subsets using the two-stage selection scheme based on the sequential use of low and high doses of MBs. For populations with broad expression distribution, a one-stage selection with low or high doses of MBs is sufficient for a clear separation of low- and high-expressing subsets in the column-retained and flow-through fractions, respectively. This study substantially extends the potential of magnetic cell sorting, and may open new possibilities in a number of biomedical applications.

Details

Title
Selection of Cell Populations with High or Low Surface Marker Expression Using Magnetic Sorting
Author
Polyakova, Natalia 1   VIAFID ORCID Logo  ; Kandarakov, Oleg 1 ; Belyavsky, Alexander 2   VIAFID ORCID Logo 

 Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia; [email protected] (N.P.); [email protected] (O.K.) 
 Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia; [email protected] (N.P.); [email protected] (O.K.); Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Butlerova 5A, Moscow 117485, Russia 
First page
1286
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20734409
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2812383852
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.