Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Anisole is a straw-colored aromatic compound mainly used in making solvents, flavoring agents, perfumes, fuel additives, and in the synthesis industries. Anisole, also known as methoxybenzene, is synthesized from sodium phenoxide or phenol using various methylating agents. The use of dimethyl ether (DME) as an alkylating agent is seldom reported in the literature. Herein, we have synthesized anisole through the O-alkylation process of phenol and DME to obtain zero discharge from this process. The thermodynamic equilibrium for the reaction of phenol and DME is simulated by using Aspen HYSYS (Hyprotech and Systems). The O-alkylation of phenol has been investigated using phosphotungstic acid (PTA) over γ-Al2O3 with appropriate acidity. Active metal loadings of various percentages were studied and the conversion was optimized at 46.57% with a selectivity of 88.22% at a temperature of 280 °C. The liquid products from the continuously stirred reactor were analyzed with liquid G.C. and the conversion and selectivity were calculated. A comparison of the O-alkylation and C-alkylation of phenol at different temperatures, reactant ratios, residence times, and recyclability was explored, as well as the impact of these factors on the yield of the desired anisole. The catalyst was characterized by XRD, BET, HR-TEM, FE-SEM, elemental mapping, XPS, and DRIFT studies.

Details

Title
Selective O-alkylation of Phenol Using Dimethyl Ether
Author
Mane Samruddhi 1 ; Bhatkar, Akash 1 ; Marimuthu Prabu 1 ; Siva Prasad Mekala 1 ; Gogoi, Pranjal 1 ; Mohapatra, Gourab 1 ; Thirumalaiswamy, Raja 1   VIAFID ORCID Logo 

 Catalysis and Inorganic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad 201002, India 
First page
602
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
2624781X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2756776339
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.