Full Text

Turn on search term navigation

Copyright © 2018 Jing Xu et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0/

Abstract

Protective carrier is essential for the self-healing of concrete cracks by microbially induced CaCO3 precipitation, owing to the harsh conditions in concrete. In this paper, porous ceramsite particles are used as microbial carrier. Heat treatment and NaOH soaking are first employed to improve the loading content of the ceramsite. The viability of bacterial spores is assessed by urea decomposition measurements. Then, the self-healing efficiency of concrete cracks by spores is evaluated by a series of tests including compressive strength regain, water uptake, and visual inspection of cracks. Results indicate that heat treatment can improve the loading content of ceramsite while not leading to a reduction of concrete strength by the ceramsite addition. The optimal heating temperature is 750°C. Ceramsite particles act as a shelter and protect spores from high-pH environment in concrete. When nutrients and spores are incorporated in ceramsite particles at the same time, nutrients are well accessible to the cells. The regain ratio of the compressive strength increases over 20%, and the water absorption ratio decreases about 30% compared with the control. The healing ratio of cracks reaches 86%, and the maximum crack width healed is near 0.3 mm.

Details

Title
Self-Healing of Concrete Cracks by Ceramsite-Loaded Microorganisms
Author
Xu, Jing 1 ; Wang, Xianzhi 1 ; Zuo, Junqing 2   VIAFID ORCID Logo  ; Liu, Xiaoyan 3   VIAFID ORCID Logo 

 Key Laboratory of Advanced Civil Engineering Materials of the Ministry of Education, Tongji University, Shanghai 201804, China 
 Shanghai Construction Group Co., Ltd., Shanghai 200080, China 
 College of Mechanics and Materials, Hohai University, Nanjing 210098, China 
Editor
Michele Iafisco
Publication year
2018
Publication date
2018
Publisher
John Wiley & Sons, Inc.
ISSN
16878434
e-ISSN
16878442
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2066319958
Copyright
Copyright © 2018 Jing Xu et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0/