Full Text

Turn on search term navigation

© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Highly Ti-doped ZnO films have been produced by a spin-casting sol-gel process. The spin-casted films show high in plane homogeneity and optical quality. However, when inspected in depth, the surface composition is Ti rich. We show that two possible annealing processes can be considered depending on the properties to exploit. To promote in-depth homogenization, thermal annealing processes have been applied. Meanwhile, the gradients can be exacerbated, thanks to a non-negligible surface sputtering, by applying microwave (MW) plasma treatments with Ar discharges at different pressures. The microstructural properties of the differently processed films have been obtained prior to a study by grazing incidence X-ray fluorescence (GI-XRF) spectroscopy, which reveals the in-depth composition trends induced by the two alternative annealing procedures. The final wetting, electrical and optical properties of the films are described in accordance with the Ti distribution pattern revealed by GI-XRF. The study underlines for the first time how MW plasma annealing processes can be used to exacerbate self-induced atomic gradients in sol-gel films with potential implications in catalytic and biomedical applications.

Details

Title
Self-Organized In-Depth Gradients in Highly Ti-Doped ZnO Films: Thermal Versus MW Plasma Annealing
Author
Ramadan, Rehab; Fernández-Ruiz, Ramón  VIAFID ORCID Logo  ; Miguel Manso Silván  VIAFID ORCID Logo 
First page
418
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
20796412
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2395385967
Copyright
© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.