Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

We present a semi-static replication algorithm for Bermudan swaptions under an affine, multi-factor term structure model. In contrast to dynamic replication, which needs to be continuously updated as the market moves, a semi-static replication needs to be rebalanced on just a finite number of instances. We show that the exotic derivative can be decomposed into a portfolio of vanilla discount bond options, which mirrors its value as the market moves and can be priced in closed form. This paves the way toward the efficient numerical simulation of xVA, market, and credit risk metrics for which forward valuation is the key ingredient. The static portfolio composition is obtained by regressing the target option’s value using an interpretable, artificial neural network. Leveraging the universal approximation power of neural networks, we prove that the replication error can be arbitrarily small for a sufficiently large portfolio. A direct, a lower bound, and an upper bound estimator for the Bermudan swaption price are inferred from the replication algorithm. Additionally, closed-form error margins to the price statistics are determined. We practically study the accuracy and convergence of the method through several numerical experiments. The results indicate that the semi-static replication approaches the LSM benchmark with basis point accuracy and provides tight, efficient error bounds. For in-model simulations, the semi-static replication outperforms a traditional dynamic hedge.

Details

Title
A Semi-Static Replication Method for Bermudan Swaptions under an Affine Multi-Factor Model
Author
Hoencamp, Jori 1 ; Jain, Shashi 2   VIAFID ORCID Logo  ; Kandhai, Drona 1 

 Informatics Institute, University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands; [email protected] 
 Indian Institute of Science, Department of Management Studies, Bangalore 560012, India; [email protected] 
First page
168
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
22279091
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2882792031
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.