Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Printed circuit board (PCB) defect detection plays a crucial role in PCB production, and the popular methods are based on deep learning and require large-scale datasets with high-level ground-truth labels, in which it is time-consuming and costly to label these datasets. Semi-supervised learning (SSL) methods, which reduce the need for labeled samples by leveraging unlabeled samples, can address this problem well. However, for PCB defects, the detection accuracy on small numbers of labeled samples still needs to be improved because the number of labeled samples is small, and the training process will be disturbed by the unlabeled samples. To overcome this problem, this paper proposed a semi-supervised defect detection method with a data-expanding strategy (DE-SSD). The proposed DE-SSD uses both the labeled and unlabeled samples, which can reduce the cost of data labeling, and a batch-adding strategy (BA-SSL) is introduced to leverage the unlabeled data with less disturbance. Moreover, a data-expanding (DE) strategy is proposed to use the labeled samples from other datasets to expand the target dataset, which can also prevent the disturbance by the unlabeled samples. Based on the improvements, the proposed DE-SSD can achieve competitive results for PCB defects with fewer labeled samples. The experimental results on DeepPCB indicate that the proposed DE-SSD achieves state-of-the-art performance, which is improved by 4.7 mAP at least compared with the previous methods.

Details

Title
Semi-Supervised Defect Detection Method with Data-Expanding Strategy for PCB Quality Inspection
Author
Wan, Yusen; Gao, Liang  VIAFID ORCID Logo  ; Li, Xinyu  VIAFID ORCID Logo  ; Gao, Yiping
First page
7971
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2728531565
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.