Full Text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Land-cover (LC) mapping in a morphologically heterogeneous landscape area is a challenging task since various LC classes (e.g., crop types in agricultural areas) are spectrally similar. Most research is still mostly relying on optical satellite imagery for these tasks, whereas synthetic aperture radar (SAR) imagery is often neglected. Therefore, this research assessed the classification accuracy using the recent Sentinel-1 (S1) SAR and Sentinel-2 (S2) time-series data for LC mapping, especially vegetation classes. Additionally, ancillary data, such as texture features, spectral indices from S1 and S2, respectively, as well as digital elevation model (DEM), were used in different classification scenarios. Random Forest (RF) was used for classification tasks using a proposed hybrid reference dataset derived from European Land Use and Coverage Area Frame Survey (LUCAS), CORINE, and Land Parcel Identification Systems (LPIS) LC database. Based on the RF variable selection using Mean Decrease Accuracy (MDA), the combination of S1 and S2 data yielded the highest overall accuracy (OA) of 91.78%, with a total disagreement of 8.22%. The most pertinent features for vegetation mapping were GLCM Mean and Variance for S1, NDVI, along with Red and SWIR band for S2, whereas the digital elevation model produced major classification enhancement as an input feature. The results of this study demonstrated that the aforementioned approach (i.e., RF using a hybrid reference dataset) is well-suited for vegetation mapping using Sentinel imagery, which can be applied for large-scale LC classifications.

Details

Title
Sentinel-1 and 2 Time-Series for Vegetation Mapping Using Random Forest Classification: A Case Study of Northern Croatia
Author
Dobrinić, Dino 1   VIAFID ORCID Logo  ; Gašparović, Mateo 2   VIAFID ORCID Logo  ; Medak, Damir 1 

 Chair of Geoinformatics, Faculty of Geodesy, University of Zagreb, 10000 Zagreb, Croatia; [email protected] (D.D.); [email protected] (D.M.) 
 Chair of Photogrammetry and Remote Sensing, Faculty of Geodesy, University of Zagreb, 10000 Zagreb, Croatia 
First page
2321
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2545090294
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.