Full Text

Turn on search term navigation

Copyright © 2016 Satwinder Singh and Ekta Singla. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

A task-oriented design strategy is presented in this paper for service manipulators. The tasks are normally defined in the form of working locations where the end-effector can work while avoiding the obstacles. To acquire feasible solutions in cluttered environments, the robotic parameters (D-H parameters) are allowed to take unconventional values. This enhances the solution space and it is observed that, by inducing this flexibility, the required number of degrees of freedom for fulfilling a given task can be reduced. A bilevel optimization problem is formulated with the outer layer utilizing the binary search method for minimizing the number of degrees of freedom. To enlarge the applicability domain of the proposed strategy, the upper limit of the number of joints is kept more than six. These allowable redundant joints would help in providing solution for intricate workcells. For each iteration of the upper level, a constrained nonlinear problem is solved for dimensional synthesis of the manipulator. The methodology is demonstrated through a case study of a realistic environment of a cluttered server room. A 7-link service arm, synthesized using the proposed method, is able to fulfill two different tasks effectively.

Details

Title
Service Arms with Unconventional Robotic Parameters for Intricate Workstations: Optimal Number and Dimensional Synthesis
Author
Singh, Satwinder; Singla, Ekta
Publication year
2016
Publication date
2016
Publisher
John Wiley & Sons, Inc.
ISSN
16879600
e-ISSN
16879619
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1783870700
Copyright
Copyright © 2016 Satwinder Singh and Ekta Singla. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.