Full Text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

To reach the targets of carbon peaking and neutral, China needs to develop electric vehicles extensively. The service level of electric vehicle charging stations (EVCSs) notably decides the promotion of electric vehicles. Given the current unsatisfactory service performance of charging stations, this paper established a multi-criteria evaluation system for the electric vehicle charging stations. We conducted a survey in 2020 by distributing questionnaires to experts and charging station users. Firstly, from the perspective of the subject and object of charging station service, the evaluation system of 16 indexes for operator service and customer service was constructed. Secondly, the order relation method and entropy weight method were used to determine the subjective weight and objective weight of the indexes, respectively. It was concluded that charging price and parking cost have a great influence on the service evaluation. Then, a comprehensive evaluation model based on the improved matter-element extension method was established to appraise three charging stations in Beijing. Sensitive analysis and comparative analysis were implemented to further demonstrate the effectiveness and stability of the proposed evaluation method. Finally, the evaluation results provided implications for improving the charging service performance.

Details

Title
Service Evaluation of Electric Vehicle Charging Station: An Application of Improved Matter-Element Extension Method
Author
Yan, Qingyou 1 ; Dong, Hua 1 ; Zhang, Meijuan 1 

 School of Economics and Management, North China Electric Power University, Beijing 102206, China; [email protected] (Q.Y.); [email protected] (M.Z.); Beijing Key Laboratory of New Energy & Low Carbon Development, North China Electric Power University, Beijing 102206, China 
First page
7910
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20711050
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2554769122
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.