Abstract

Precision Medicine implies a deep understanding of inter-individual differences in health and disease that are due to genetic and environmental factors. To acquire such understanding there is a need for the implementation of different types of technologies based on artificial intelligence (AI) that enable the identification of biomedically relevant patterns, facilitating progress towards individually tailored preventative and therapeutic interventions. Despite the significant scientific advances achieved so far, most of the currently used biomedical AI technologies do not account for bias detection. Furthermore, the design of the majority of algorithms ignore the sex and gender dimension and its contribution to health and disease differences among individuals. Failure in accounting for these differences will generate sub-optimal results and produce mistakes as well as discriminatory outcomes. In this review we examine the current sex and gender gaps in a subset of biomedical technologies used in relation to Precision Medicine. In addition, we provide recommendations to optimize their utilization to improve the global health and disease landscape and decrease inequalities.

Details

Title
Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare
Author
Cirillo Davide 1   VIAFID ORCID Logo  ; Catuara-Solarz Silvina 2 ; Morey Czuee 3 ; Guney Emre 4   VIAFID ORCID Logo  ; Subirats Laia 5   VIAFID ORCID Logo  ; Mellino Simona 6 ; Gigante Annalisa 6 ; Valencia, Alfonso 7 ; Rementeria, María José 1 ; Chadha, Antonella Santuccione 6 ; Mavridis Nikolaos 8 

 Barcelona Supercomputing Center (BSC), Barcelona, Spain (GRID:grid.10097.3f) (ISNI:0000 0004 0387 1602) 
 Telefonica Innovation Alpha Health, Torre Telefonica, Barcelona, Spain (GRID:grid.10097.3f); The Women’s Brain Project (WBP), Guntershausen, Switzerland (GRID:grid.508244.f) 
 The Women’s Brain Project (WBP), Guntershausen, Switzerland (GRID:grid.508244.f); Wega Informatik AG, Basel, Switzerland (GRID:grid.508244.f) 
 Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Research Institute and Pompeu Fabra University, Barcelona, Spain (GRID:grid.5612.0) (ISNI:0000 0001 2172 2676) 
 Eurecat - Centre Tecnològic de Catalunya, Barcelona, Spain (GRID:grid.5612.0); eHealth Center, Universitat Oberta de Catalunya, Barcelona, Spain (GRID:grid.36083.3e) (ISNI:0000 0001 2171 6620) 
 The Women’s Brain Project (WBP), Guntershausen, Switzerland (GRID:grid.508244.f) 
 Barcelona Supercomputing Center (BSC), Barcelona, Spain (GRID:grid.10097.3f) (ISNI:0000 0004 0387 1602); ICREA, Barcelona, Spain (GRID:grid.425902.8) (ISNI:0000 0000 9601 989X) 
 The Women’s Brain Project (WBP), Guntershausen, Switzerland (GRID:grid.508244.f); Interactive Robots and Media Laboratory (IRML), Abu Dhabi, United Arab Emirates (GRID:grid.508244.f) 
Publication year
2020
Publication date
Dec 2020
Publisher
Nature Publishing Group
e-ISSN
23986352
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2528863749
Copyright
© The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.