Full Text

Turn on search term navigation

© 2019. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Since the shape memory effect (SME) has been confirmed in micron and submicron sized polyurethane (PU) shape memory polymer (SMP), it might be used in novel micro/nano devices even for surgery/operation inside a single cell. In this study, micron sized protrusive PU SMP composite chains are fabricated via mixing ferromagnetic nickel micro powders with PU SMP/dimethylformamide solution and then cured under a low magnetic field. Depending on the amount of nickel content, vertical protrusive chains with a diameter from 10 to 250 µm and height from 200 to 1500 µm are obtained. The SME in these chains is investigated to confirm the SME in SMP composites at microscale. An array of such protrusive chains may be utilized to obtain re-configurable surface patterns in a simple manner for applications, such as remarkable change in wetting and friction ability. Finally, its potential applications for micro electro mechanical systems (MEMS) and biomedical device are proposed.

Details

Title
Shape Memory Effect in Micro-Sized Shape Memory Polymer Composite Chains
Author
Lan, Xin  VIAFID ORCID Logo  ; Huang, Weimin; Leng, Jinsong
First page
2919
Publication year
2019
Publication date
2019
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2426409752
Copyright
© 2019. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.