Content area

Abstract

Argonaute (Ago) proteins are found in all three domains of life. The so-called long Agos are composed of four major domains (N, PAZ, MID and PIWI) and contribute to RNA silencing in eukaryotes (eAgos) or defence against invading mobile genetic elements in prokaryotes (pAgos). The majority (~60%) of pAgos identified bioinformatically are shorter (comprising only MID and PIWI domains) and are typically associated with Sir2, Mrr or TIR domain-containing proteins. The cellular function and mechanism of short pAgos remain enigmatic. Here we show that Geobacter sulfurreducens short pAgo and the NAD+-bound Sir2 protein form a stable heterodimeric complex. The GsSir2/Ago complex presumably recognizes invading plasmid or phage DNA and activates the Sir2 subunit, which triggers endogenous NAD+ depletion and cell death, and prevents the propagation of invading DNA. We reconstituted NAD+ depletion activity in vitro and showed that activated GsSir2/Ago complex functions as a NADase that hydrolyses NAD+ to ADPR. Thus, short Sir2-associated pAgos provide defence against phages and plasmids, underscoring the diversity of mechanisms of prokaryotic Agos.

Short pAgo proteins associate with the Sir2 effector from Geobacter sulfurreducens to induce abortive infection via NAD+ depletion and provide defence against invading DNA.

Details

Title
Short prokaryotic Argonautes provide defence against incoming mobile genetic elements through NAD+ depletion
Author
Zaremba, Mindaugas 1   VIAFID ORCID Logo  ; Dakineviciene, Donata 1 ; Golovinas, Edvardas 1   VIAFID ORCID Logo  ; Zagorskaitė, Evelina 1 ; Stankunas, Edvinas 2 ; Lopatina, Anna 3 ; Sorek, Rotem 4   VIAFID ORCID Logo  ; Manakova, Elena 1 ; Ruksenaite, Audrone 1 ; Silanskas, Arunas 1 ; Asmontas, Simonas 1   VIAFID ORCID Logo  ; Grybauskas, Algirdas 1 ; Tylenyte, Ugne 1 ; Jurgelaitis, Edvinas 1 ; Grigaitis, Rokas 5   VIAFID ORCID Logo  ; Timinskas, Kęstutis 1 ; Venclovas, Česlovas 1 ; Siksnys, Virginijus 1   VIAFID ORCID Logo 

 Vilnius University, Institute of Biotechnology, Life Sciences Center, Vilnius, Lithuania (GRID:grid.6441.7) (ISNI:0000 0001 2243 2806) 
 Vilnius University, Institute of Biotechnology, Life Sciences Center, Vilnius, Lithuania (GRID:grid.6441.7) (ISNI:0000 0001 2243 2806); Medical University of Vienna, Vienna Biocenter Campus (VBC), Max Perutz Labs, Vienna, Austria (GRID:grid.22937.3d) (ISNI:0000 0000 9259 8492) 
 Weizmann Institute of Science, Department of Molecular Genetics, Rehovot, Israel (GRID:grid.13992.30) (ISNI:0000 0004 0604 7563); University of Vienna, Division of Microbial Ecology, Center for Microbiology and Environmental Systems Science, Vienna, Austria (GRID:grid.10420.37) (ISNI:0000 0001 2286 1424) 
 Weizmann Institute of Science, Department of Molecular Genetics, Rehovot, Israel (GRID:grid.13992.30) (ISNI:0000 0004 0604 7563) 
 Vilnius University, Institute of Biotechnology, Life Sciences Center, Vilnius, Lithuania (GRID:grid.6441.7) (ISNI:0000 0001 2243 2806); Vilnius University, VU LSC-EMBL Partnership for Genome Editing Technologies, Life Sciences Center, Vilnius, Lithuania (GRID:grid.6441.7) (ISNI:0000 0001 2243 2806) 
Pages
1857-1869
Publication year
2022
Publication date
Nov 2022
Publisher
Nature Publishing Group
e-ISSN
20585276
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2729316677
Copyright
© The Author(s), under exclusive licence to Springer Nature Limited 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.