Full text

Turn on search term navigation

© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Accumulated evidence suggests that binding kinetic properties—especially dissociation rate constant or drug-target residence time—are crucial factors affecting drug potency. However, quantitative prediction of kinetic properties has always been a challenging task in drug discovery. In this study, the VolSurf method was successfully applied to quantitatively predict the koff values of the small ligands of heat shock protein 90α (HSP90α), adenosine receptor (AR) and p38 mitogen-activated protein kinase (p38 MAPK). The results showed that few VolSurf descriptors can efficiently capture the key ligand surface properties related to dissociation rate; the resulting models demonstrated to be extremely simple, robust and predictive in comparison with available prediction methods. Therefore, it can be concluded that the VolSurf-based prediction method can be widely applied in the ligand-receptor binding kinetics and de novo drug design researches.

Details

Title
In Silico Prediction of the Dissociation Rate Constants of Small Chemical Ligands by 3D-Grid-Based VolSurf Method
Author
Huang, Shuheng; Chen, Linxin; Hu, Mei; Zhang, Duo; Shi, Tingting; Kuang, Zuyin; Yu, Heng; Xu, Lei; Pan, Xianchao
First page
2456
Publication year
2020
Publication date
2020
Publisher
MDPI AG
ISSN
16616596
e-ISSN
14220067
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2387099499
Copyright
© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.