Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Although silicon is being researched as one of the most promising anode materials for future generation lithium-ion batteries owing to its greater theoretical capacity (3579 mAh g−1), its practical applicability is hampered by its worse rate properties and poor cycle performance. Herein, a silicon/graphite/amorphous carbon (Si/G/C) anode composite material has been successfully prepared by a facile spray-drying method followed by heating treatment, exhibiting excellent electrochemical performance compared with silicon/amorphous carbon (Si/C) in lithium-ion batteries. At 0.1 A g−1, the Si/G/C sample exhibits a high initial discharge capacity of 1886 mAh g−1, with a high initial coulombic efficiency of 90.18%, the composite can still deliver a high initial charge capacity of 800 mAh g−1 at 2 A g−1, and shows a superior cyclic and rate performance compared to the Si/C anode sample. This work provides a facile approach to synthesize Si/G/C composite for lithium-ion batteries and has proven that graphite replacing amorphous carbon can effectively improve the electrochemical performance, even using low-performance micrometer silicon and large size flake graphite.

Details

Title
Silicon/Graphite/Amorphous Carbon as Anode Materials for Lithium Secondary Batteries
Author
Duan, Haojie 1 ; Xu, Hongqiang 2 ; Wu, Qian 2 ; Zhu, Lin 2 ; Zhang, Yuting 2 ; Yin, Bo 2 ; He, Haiyong 1 

 School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China; Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China 
 Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China 
First page
464
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
14203049
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2767284358
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.