Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Efficient simulation of the helical coiled once-through steam generator (H-OTSG) is crucial in the design and safety analysis of the high-temperature gas-cooled reactor (HTGR). The physical property and phase transformation of water in the steam generator brings great challenges during simulation. The water properties calculation routine occupies a large part of the computational time in the steam generator solution process. Thus, a thermohydraulic property library is developed based on the IAPWS-IF97 formulation in this work to reduce the computational cost. Here the formulation adopts the backward equation method to avoid iterations in thermodynamic property calculation. Moreover, two Newton-method-based simultaneous solutions are implemented as implicitly nonlinear solvers, including Jacobian-Free Newton–Krylov (JFNK) and Newton–Krylov (NK) methods, due to its excellent computational performance. These simultaneous solution algorithms are combined with the developed water property library to simulate the H-OTSG efficiently. The numerical analysis is performed based on the transient and steady-state cases of the HTR-10 steam generator. Successful simulations of HTR-10 steam generator cases demonstrate the capability of the newly developed method.

Details

Title
Simultaneous Solution of Helical Coiled Once-Through Steam Generator with High-Speed Water Property Library
Author
Wu, Yingjie; Jiang, Zhuo; Zhang, Han; Liu, Lixun; Tang, Huanran; Guo, Jiong; Fu, Li
First page
1627
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
19961073
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2779543760
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.