Full Text

Turn on search term navigation

© 2023. This work is licensed under https://creativecommons.org/licenses/by-nc/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Background: Anti-programmed cell death ligand-1 (anti-PD-L1) immunotherapy is often used for advanced urothelial carcinoma and melanoma, including amelanotic melanoma, a relatively rare subtype with little to no pigment in the tumor cells. However, cellular heterogeneity of amelanotic melanoma during or after anti-PD-L1 immunotherapy treatments has not been described.

Purpose: To investigate cellular heterogeneity in acral amelanotic melanoma after immunotherapy exposure.

Methods: We evaluated subtle visual changes of the melanoma by dermoscopy and performed a pathological examination to analyze the heterogeneity of microscopic morphological and immunohistochemistry changes. The cellular transcriptional heterogeneity and corresponding biological function profiles of the melanoma were determined by single-cell RNA sequencing (scRNA-seq).

Results: The dermoscopic examination revealed black globules and scar-like depigmentation areas against a homogeneous red background. Pigmented and amelanotic melanoma cells were observed microscopically. The pigmented cells were large and contained melanin granules expressing Melan-A and HMB45; the amelanotic cells were small and did not express HMB45. Ki-67 immunohistochemical staining revealed that the pigmented melanoma cells had a higher proliferative ability than the amelanotic cells. scRNA-seq identified three cell clusters: amelanotic cell cluster 1, amelanotic cell cluster 2, and pigmented cell cluster. Furthermore, a pseudo-time trajectory analysis showed that amelanotic cell cluster 2 originated from amelanotic cell cluster 1 and transformed into the pigmented melanoma cell cluster. The expression pattern of melanin synthesis-related and lysosome-endosome-related genes in different cell clusters supported the cell cluster transformation results. Also, upregulated expression of cell cycle genes indicated that the pigmented melanoma cells had a high proliferative ability.

Conclusion: Coexisting amelanotic and pigmented melanoma cells indicated cellular heterogeneity in an acral amelanotic melanoma from a patient who underwent immunotherapy treatment. Additionally, the pigmented melanoma cells acquired a higher proliferative ability than the amelanotic melanoma cells.

Details

Title
Single-Cell RNA Sequencing Reveals Cellular Heterogeneity in an Acral Amelanotic Melanoma After Immunotherapy Treatment
Author
Zhuang, L; Tian, J  VIAFID ORCID Logo  ; Lai, B; Zhang, G; Li H
Pages
1009-1018
Section
Original Research
Publication year
2023
Publication date
2023
Publisher
Taylor & Francis Ltd.
e-ISSN
1178-7015
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2801859511
Copyright
© 2023. This work is licensed under https://creativecommons.org/licenses/by-nc/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.