Full Text

Turn on search term navigation

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The present study explores the exploitation of ladder-like polysilsesquioxanes (PSQs) bearing reactive functional groups in conjunction with SiO2 nanoparticles (NPs) to produce UV-curable nanocomposite coatings with increased hydrophobicity and good thermal resistance. In detail, a medium degree regular ladder-like structured poly (methacryloxypropyl) silsesquioxane (LPMASQ) and silica NPs, either naked or functionalized with a methacrylsilane (SiO2@TMMS), were blended and then irradiated in the form of a film. Material characterization evidenced significant modifications of the structural organization of the LPMASQ backbone and, in particular, a rearrangement of the silsesquioxane chains at the interface upon introduction of the functionalized silica NPs. This leads to remarkable thermal resistance and enhanced hydrophobic features in the final nanocomposite. The results suggest that the adopted strategy, in comparison with mostly difficult and expensive surface modification and structuring protocols, may provide tailored functional properties without modifying the surface roughness or the functionalities of silsesquioxanes, but simply tuning their interactions at the hybrid interface with silica fillers.

Details

Title
SiO2/Ladder-Like Polysilsesquioxanes Nanocomposite Coatings: Playing with the Hybrid Interface for Tuning Thermal Properties and Wettability
Author
Massimiliano D’Arienzo 1 ; Dirè, Sandra 2   VIAFID ORCID Logo  ; Cobani, Elkid 1 ; Orsini, Sara 1 ; Barbara Di Credico 1   VIAFID ORCID Logo  ; Antonini, Carlo 1   VIAFID ORCID Logo  ; Callone, Emanuela 2 ; Parrino, Francesco 3 ; Sara Dalle Vacche 4   VIAFID ORCID Logo  ; Trusiano, Giuseppe 5   VIAFID ORCID Logo  ; Bongiovanni, Roberta 4   VIAFID ORCID Logo  ; Scotti, Roberto 1 

 Department of Materials Science, INSTM, University of Milano-Bicocca, Via R. Cozzi 55, 20125 Milano, Italy; [email protected] (E.C.); [email protected] (S.O.); [email protected] (B.D.C.); [email protected] (C.A.); [email protected] (R.S.) 
 Department Industrial Engineering, University of Trento, Via Sommarive 9, 38123 Trento, Italy; [email protected] (E.C.); [email protected] (F.P.); “Klaus Müller” Magnetic Resonance Lab., Department of Industrial Engineering, University of Trento, Via Sommarive 9, 38123 Trento, Italy 
 Department Industrial Engineering, University of Trento, Via Sommarive 9, 38123 Trento, Italy; [email protected] (E.C.); [email protected] (F.P.) 
 Department of Applied Science and Technology, DISAT, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; [email protected] (S.D.V.); [email protected] (G.T.); [email protected] (R.B.); Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali, (INSTM) Via G. Giusti, 9, 50121 Firenze, Italy 
 Department of Applied Science and Technology, DISAT, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; [email protected] (S.D.V.); [email protected] (G.T.); [email protected] (R.B.) 
First page
913
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
20796412
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2548339881
Copyright
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.