Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The ternary metal sulfide CdIn2S4 (CIS) has great application potential in solar-to-hydrogen conversion due to its suitable band gap, good stability and low cost. However, the photocatalytic hydrogen (H2) evolution performance of CIS is severely limited by the rapid electron–hole recombination originating from the slow photogenerated hole transfer kinetics. Herein, by simply depositing cobalt phosphate (CoHxPOy, noted as Co-Pi), a non-precious co-catalyst, an efficient pathway for accelerating the hole transfer process and subsequently promoting the H2 evolution reaction (HER) activity of CIS nanosheets is developed. X-ray photoelectron spectroscopy (XPS) reveals that the Co atoms of Co-Pi preferentially combine with the unsaturated S atoms of CIS to form Co-S bonds, which act as channels for fast hole extraction from CIS to Co-Pi. Electron paramagnetic resonance (EPR) and time-resolved photoluminescence (TRPL) showed that the introduction of Co-Pi on ultrathin CIS surface not only increases the probability of photogenerated holes arriving the catalyst surface, but also prolongs the charge carrier’s lifetime by reducing the recombination of electrons and holes. Therefore, Co-Pi/CIS exhibits a satisfactory photocatalytic H2 evolution rate of 7.28 mmol g−1 h−1 under visible light, which is superior to the pristine CIS (2.62 mmol g−1 h−1) and Pt modified CIS (3.73 mmol g−1 h−1).

Details

Title
In Situ Photodeposition of Cobalt Phosphate (CoHxPOy) on CdIn2S4 Photocatalyst for Accelerated Hole Extraction and Improved Hydrogen Evolution
Author
Xu, Jiachen 1 ; Li, Qinran 1 ; Sui, Dejian 1 ; Jiang, Wei 1 ; Liu, Fengqi 1 ; Gu, Xiuquan 1 ; Zhao, Yulong 1 ; Pengzhan Ying 1 ; Mao, Liang 1 ; Cai, Xiaoyan 2   VIAFID ORCID Logo  ; Zhang, Junying 3   VIAFID ORCID Logo 

 School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China 
 School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China; School of Safety Engineering, China University of Mining and Technology, Xuzhou 221116, China 
 School of Physics, Beihang University, Beijing 100191, China 
First page
420
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20794991
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2774953087
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.