Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Deep learning-based object detection is one of the most popular research topics. However, in cases where large-scale datasets are unavailable, the training of detection models remains challenging due to the data-driven characteristics of deep learning. Small object detection in infrared images is such a case. To solve this problem, we propose a YOLOv5-based framework with a novel training strategy based on the domain adaptation method. First, an auxiliary domain classifier is combined with the YOLOv5 architecture to compose a detection framework that is trainable using datasets from multiple domains while maintaining calculation costs in the inference stage. Secondly, a new loss function based on Wasserstein distance is proposed to deal with small-sized objects by overcoming the problem of the intersection over union sensitivity problem in small-scale cases. Then, a model training strategy inspired from domain adaptation and knowledge distillation is presented. Using the domain confidence output of the domain classifier as a soft label, domain confusion loss is backpropagated to force the model to extract domain-invariant features while training the model with datasets with imbalanced distributions. Additionally, we generate a synthetic dataset in both the visible light and infrared spectrum to overcome the data shortage. The proposed framework is trained on the MS COCO, VEDAI, DOTA, ADAS Thermal datasets along with a constructed synthetic dataset for human detection and vehicle detection tasks. The experimental results show that the proposed framework achieved the best mean average precision (mAP) of 64.7 and 57.5 in human and vehicle detection tasks. Additionally, the ablation experiment shows that the proposed training strategy can improve the performance by training the model to extract domain-invariant features.

Details

Title
Small Object Detection in Infrared Images: Learning from Imbalanced Cross-Domain Data via Domain Adaptation
Author
Kim, Jaekyung 1   VIAFID ORCID Logo  ; Huh, Jungwoo 1 ; Park, Ingu 2 ; Bak, Junhyeong 2 ; Kim, Donggeon 2 ; Lee, Sanghoon 1   VIAFID ORCID Logo 

 Department of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Korea 
 LIG Nex1, Yongin 16911, Korea 
First page
11201
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2771650964
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.