Abstract
Traffic congestion and air pollution continue to be serious concerns, especially in large cities, and going forward, this is not sustainable. Urban transport around the world is facing challenges, such as air pollution and inefficient use of resources, that often inhibit economic development. Simply building more roads cannot address such challenges. There is a need to integrate the urban infrastructure through smart connectivity. Smart mobility, as a vital cornerstone of a smart city, will potentially reduce traffic jams, commuting times, and road crashes and create an opportunity for passengers to customize their journeys. In fact, planning smart mobility solutions is among the top challenges for large cities around the world. It involves a set of deliberate actions backed by sophisticated technologies. The different elements and dimensions that characterize smart mobility are investigated to depict the overall picture surrounding the smart mobility domain. Additionally, the trends, opportunities, and threats inherent to smart mobility are addressed. There are four segments of smart mobility that are highlighted in this paper: intelligent transport systems, open data, big data analytics, and citizen engagement. These segments are all inter-related and play a crucial role in the successful implementation of smart mobility.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details






1 Faculty of Engineering and Natural Sciences, Ankara Yildirim Beyazit University, 06760 Ankara, Turkey
2 School of Accounting, Information Systems and Supply Chain, RMIT University, Melbourne, VIC 3000, Australia;
3 School of Civil and Environmental Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia;
4 Transport Research Center, Polytechnic University of Madrid, 28040 Madrid, Spain;
5 Institute for studies on the Mediterranean, National Research Council, 00185 Roma, Italy;
6 Department of Civil Engineering, School of Engineering, University of Birmingham, Birmingham B15 2TT, UK;
7 Department of Applied Economics, University of Granada, 18071 Granada, Spain;