Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The aim of the research was to evaluate the performance of smartphone depth sensors (Time of Flight Camera(ToF) and Light Detection and Ranging (LiDAR)) from Android (Huawei P30 Pro) and iOS (iPhone 12 Pro and iPAD 2021 Pro) devices in order to build a 3D point cloud. In particular, the smartphones were tested in several case studies involving the scanning of several objects: 10 building material samples, a statue, an interior room environment and the remains of a Doric column in a major archaeological site. The quality of the point clouds was evaluated through visual analysis and using three eigenfeatures: surface variation, planarity and omnivariance. Based on this approach, some issues with the point clouds generated by smartphones were highlighted, such as surface splitting, loss of planarity and inertial navigation system drift problems. In addition, it can finally be deduced that, in the absence of scanning problems, the accuracies achievable from this type of scanning are ~1–3 cm. Therefore, this research intends to describe a method of quantifying anomalies occurring in smartphone scans and, more generally, to verify the quality of the point cloud obtained with these devices.

Details

Title
Smartphone LiDAR Technologies for Surveying and Reality Modelling in Urban Scenarios: Evaluation Methods, Performance and Challenges
Author
Costantino, Domenica  VIAFID ORCID Logo  ; Vozza, Gabriele; Pepe, Massimiliano; Alfio, Vincenzo Saverio  VIAFID ORCID Logo 
First page
63
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
25715577
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2706101060
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.