Full Text

Turn on search term navigation

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

To simulate the dynamics of two-dimensional dam-break flow on a dry horizontal bed, we use a smoothed particle hydrodynamics model implementing two advanced boundary treatment techniques: (i) a semi-analytical approach, based on the computation of volume integrals within the truncated portions of the kernel supports at boundaries and (ii) an extension of the ghost-particle boundary method for mobile boundaries, adapted to free-slip conditions. The trends of the free surface along the channel, and of the impact wave pressures on the downstream vertical wall, were first validated against an experimental case study and then compared with other numerical solutions. The two boundary treatment schemes accurately predicted the overall shape of the primary wave front advancing along the dry bed until its impact with the downstream vertical wall. Compared to data from numerical models in the literature, the present results showed a closer fit to an experimental secondary wave, reflected by the downstream wall and characterized by complex vortex structures. The results showed the reliability of both the proposed boundary condition schemes in resolving violent wave breaking and impact events of a practical dam-break application, producing smooth pressure fields and accurately predicting pressure and water level peaks.

Details

Title
Smoothed Particle Hydrodynamics Modeling with Advanced Boundary Conditions for Two-Dimensional Dam-Break Floods
Author
Mirauda, Domenica 1 ; Albano, Raffaele 1   VIAFID ORCID Logo  ; Sole, Aurelia 1 ; Adamowski, Jan 2   VIAFID ORCID Logo 

 School of Engineering, University of Basilicata, 85100 Potenza, Italy; [email protected] (D.M.); [email protected] (A.S.) 
 Department of Bioresource Engineering, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC H3A 0G4, Canada; [email protected] 
First page
1142
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
20734441
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2774057192
Copyright
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.