Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The sol-gel process was used to create a new type of polypyrrole-Stannous(II)tungstate nanocomposite by poly(N-methyl pyrrole (PNMPy) sol in Stannous(II)tungstate gel, produced separately using sodium silicotungstic acid and Tn(II)chloride. Tin(II)tungstate (SnWO3) was made by changing the mixing volume ratios of SnWO3 and with a constant amount of an organic polymer. The composite was characterized by TGA, XRD, FTIR, and SEM measurements. A commercially available glassy carbon electrode (GCE) was modified with PNMPy/nano-Stannous(II)WO3 nanocomposites to create a chemical sensor for selective detection of Hg2+ ions using an effective electrochemical methodology. In the I-V technique, selectively toxic Hg2+ ion was targeted selectively, which shows a rapid reaction toward PNMPy/nano-Stannous(II)WO3/Nafion/GCE sensor. It also demonstrates long-term stability, an ultra-low detection limit, exceptional sensitivity, and excellent reproducibility and repeatability. For 0.1 mM to 1.0 nM aqueous Hg2+ ion solution, a linear calibration plot (r2: 0.9993) was achieved, with a suitable sensitivity value of 2.8241 AM−1 cm−2 and an extraordinarily low detection limit (LOD) of 3.40.1 pM (S/N = 3). As a result, the cationic sensor modified by PNMPy/nano-Stannous(II)WO3/GCE could be a promising electrode.

Details

Title
Sol-Gel Synthesis and Characterization of Highly Selective Poly(N-methyl pyrrole) Stannous(II)Tungstate Nano Composite for Mercury (Hg(II)) Detection
Author
Khan, Anish 1   VIAFID ORCID Logo  ; Aftab Aslam Parwaz Khan 1   VIAFID ORCID Logo  ; Khan, Imran 2 ; Asiri, Abdullah M 1   VIAFID ORCID Logo  ; Rahman, Mohammed M 1   VIAFID ORCID Logo 

 Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; [email protected] (A.A.P.K.); [email protected] (A.M.A.); Center of Excellence for Advanced Materials Research, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia 
 Applied Sciences and Humanities Section, University Polytechnic, Faculty of Engineering and Technology, Aligarh Muslim University, Aligarh 202002, India; [email protected] 
First page
371
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20734352
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2642411404
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.