Full Text

Turn on search term navigation

© Hoyon Hwang, Jaeyoung Cha and Jon Ahn. This work is published under https://creativecommons.org/licenses/by-nc/3.0/legalcode (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Purpose

The purpose of this paper is to present the development of an optimal design framework for high altitude long endurance solar unmanned aerial vehicle. The proposed solar aircraft design framework provides a simple method to design solar aircraft for users of all levels of experience.

Design/methodology/approach

This design framework consists of algorithms and user interfaces for the design of experiments, optimization and mission analysis that includes aerodynamics, performance, solar energy, weight and flight distances.

Findings

The proposed sizing method produces the optimal solar aircraft that yields the minimum weight and satisfies the constraints such as the power balance, the night time energy balance and the lift coefficient limit.

Research limitations/implications

The design conditions for the sizing process are given in terms of mission altitudes, flight dates, flight latitudes/longitudes and design factors for the aircraft configuration.

Practical implications

The framework environment is light and easily accessible as it is implemented using open programs without the use of any expensive commercial tools or in-house programs. In addition, this study presents a sizing method for solar aircraft as traditional sizing methods fail to reflect their unique features.

Social implications

Solar aircraft can be used in place of a satellite and introduce many advantages. The solar aircraft is much cheaper than the conventional satellite, which costs approximately $200-300m. It operates at a closer altitude to the ground and allows for a better visual inspection. It also provides greater flexibility of missions and covers a wider range of applications.

Originality/value

This study presents the implementation of a function that yields optimized flight performance under the given mission conditions, such as climb, cruise and descent for a solar aircraft.

Details

Title
Solar UAV design framework for a HALE flight
Author
Hwang, Hoyon; Cha, Jaeyoung; Ahn, Jon
Pages
927-937
Publication year
2019
Publication date
2019
Publisher
Emerald Group Publishing Limited
ISSN
17488842
e-ISSN
17584213
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2273117455
Copyright
© Hoyon Hwang, Jaeyoung Cha and Jon Ahn. This work is published under https://creativecommons.org/licenses/by-nc/3.0/legalcode (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.