Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In this study the extractive capability of Mextral 5640H was investigated for extraction of copper from a heap leach liquor. In this regard, the influence of parameters such as pH (0.2–2.8), extractant concentration in kerosene diluent (2.5%–10% v/v), temperature (25–70 °C), contact time (0–300 s), stirring speed (100–1200 rpm), phase ratio (O/A) (0.6–1.8) and Cu initial concentration (0.5–2 g/L) in the leach liquor were examined and optimized. The findings demonstrated that the Mextral 5640H extractant had a very high efficiency and selectivity in copper extraction from the leachate. 98.17% Cu, with less than 0.5% of Fe and Mn, were extracted at pH 1.6, 10% (v/v) Mextral 5640H concentration, ambient temperature (25 °C), 400 rpm stirring speed, 2 min contact time and an O/A phase ratio of 1:1. Under equilibrium conditions it was found that one mol of Cu is extracted by 7 mol of Mextral 5640H. Additionally, analysis using a McCabe–Thiele diagram suggests a two-stage extraction to reach the maximum extraction of copper (99.5%) from the leachate at operational condition using industrial mixer-settlers. Furthermore, a thermodynamic study was conducted, and the measured values of ΔH = 15.13 kJ/mol, ΔG = −6.95 kJ/mol and ΔS = 74.10 J/mol/K indicate an endothermic, spontaneous nature and high affinity of copper extraction.

Details

Title
Solvent Extraction Studies of Copper from a Heap Leach Liquor Using Mextral 5640H
Author
Hosseinzadeh, Mostafa 1 ; Petersen, Jochen 2   VIAFID ORCID Logo  ; Azizi, Asghar 3 

 Hydrometallurgy Research Group, Chemical Engineering Department, University of Cape Town, Cape Town 7700, South Africa; Research and Development Division, Zagros Mes Sazan (ZMS) Copper Company, Saveh 39141-39141, Iran 
 Hydrometallurgy Research Group, Chemical Engineering Department, University of Cape Town, Cape Town 7700, South Africa 
 Faculty of Mining, Petroleum and Geophysics, Shahrood University of Technology, Shahrood 36199-95161, Iran 
First page
1322
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
2075163X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2728508381
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.