Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

It is important to consider extreme climate events, reduce disaster losses, and formulate effective disaster prevention and mitigation countermeasures. Based on the daily data from 36 meteorological stations of Xinjiang from 1960 to 2020, in order to analyze the temporal–spatial variations and influencing factors of extreme dry and wet events in Xinjiang, a number of methods were used including climate trend, the Mann–Kendall test, the Fourier power spectrum, the contribution rate, partial least squares and cross-wavelet analysis. Results indicate that the annual average frequency of extreme dry/wet events has a decreasing/increasing trend, at the rate of 0.26 times/decade and 0.19 times/decade, respectively; the variation trend in extreme dry and wet events of four seasons are consistent with the annual counterpart, at the rate of −0.04 times/decade and 0.02 times/decade (spring), −0.08 times/decade and 0.05 times/decade (summer), −0.05 times/decade and 0.06 times/decade (autumn), and −0.1 times/decade and 0.08 times/decade (winter). Fe fluctuation is greatest in winter and the smallest in spring, so the transition to warm and wet is obvious in winter and spring drought is easy to occur; the variation extent of extreme dry and wet events in northern Xinjiang exceeds the counterpart in southern Xinjiang; 1986 and 1987 witnessed abrupt variation in extreme dry and wet events in Xinjiang, with indication of distinct periodic oscillations of 2.44, 2.94, and 5.69 years and 2.94 and 5.69 years, respectively; the extreme dry (wet) events are determined by meteorological factors, comprising precipitation, relative humidity and temperature, and the circulation factors constituted by Western Pacific Subtropical High-Intensity Area (East Asian Trough Intensity, Westerly Circulation and Western Pacific Subtropical High Area) and El Niño events.

Details

Title
Spatial and Temporal Characteristics of Extreme Dry and Wet Events in Xinjiang from 1960 to 2020 and the Analysis of Influencing Factors
Author
Geng, Mengdie  VIAFID ORCID Logo  ; Liu, Puxing; Qiao, Xuemei; Wang, Miao  VIAFID ORCID Logo  ; Wang, Xingdan
First page
1067
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20734433
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2693898254
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.