Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The permanent magnet synchronous traction motor (PMSTM) is the core equipment of urban rail transit. If a PMSTM fails, it will cause serious economic losses and casualties. It is essential to estimate the current health state and predict remaining useful life (RUL) for PMSTMs. Directly obtaining the internal representation of a PMSTM is known to be difficult, and PMSTMs have long service lives. In order to address these drawbacks, a combination of SIR and HSMM based state estimation and RUL prediction method is introduced with the multi-parameter fusion health index (MFHI) as the performance indicator. The proposed method’s advantages over the conventional HSMM method were verified through simulation research and examples. The results show that the proposed state estimation method has small error distribution results, and the RUL prediction method can obtain accurate results. The findings of this study demonstrate that the proposed method may serve as a new and effective technique to estimate a PMSTM’s health state and RUL.

Details

Title
State Estimation and Remaining Useful Life Prediction of PMSTM Based on a Combination of SIR and HSMM
Author
Tian, Guishuang 1 ; Wang, Shaoping 2 ; Shi, Jian 2 ; Qiao, Yajing 1   VIAFID ORCID Logo 

 School of Automation Science and Electrical Engineering, Beihang University, Beijing 100191, China 
 School of Automation Science and Electrical Engineering, Beihang University, Beijing 100191, China; Science and Technology on Aircraft Control Laboratory, Beihang University, Beijing 100191, China; Ningbo Institute of Technology, Beihang University, Ningbo 315800, China 
First page
16810
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20711050
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2756819699
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.