Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Regarding DC fast chargers, various studies, such as the charge scheduling, have been conducted. On the other hand, research on AC slow chargers has rarely been conducted due to the predictable and simple usage pattern. Despite the long charging times of AC slow chargers, which use the existing electric outlets with relatively low supplied power, these chargers are suitable for daily home charging of electric vehicles (EVs) during the night. Due to their low installation costs, they are likely to be the dominant type of charging equipment. In this paper, the EV charging process based on AC slow chargers, which supply a maximum power of 3 kW from an AC 220 V outlet, is analyzed by constructing a simple charging model. The charging time and fees are statistically derived and investigated. Furthermore, power load curves for charging EVs with the 3 kW charger are observed. From the statistical analyses, we conclude that daily charging of EVs can be an appropriate scenario in using the AC slow chargers, and the power load can be spread without employing any demand response schemes.

Details

Title
Statistical Analysis of Electric Vehicle Charging Based on AC Slow Chargers
Author
Kim, Dong Sik 1   VIAFID ORCID Logo  ; Young Mo Chung 2   VIAFID ORCID Logo  ; Beom Jin Chung 3   VIAFID ORCID Logo 

 Deparment of Electronics Engineering, Hankuk University of Foreign Studies, Yongin-si 17035, Republic of Korea; [email protected] 
 Department of Electronics and Information Engineering, Hansung University, Seoul 02876, Republic of Korea; [email protected] 
 Research Center for Electrical and Information Technology, Seoul National University of Science & Technology, Seoul 01811, Republic of Korea 
First page
2735
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
19961073
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2791647918
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.