It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
A reheat and non-reheat steam turbines governor is a component of the turbine control system that regulates rotational speed in response to changing load conditions. The governor output signal manipulates the position of a steam inlet valve or nozzles which in turn regulates the steam flow to the turbine. The application of PID (proportional integral derivative (controller has been widely used from small industry to high technology industry. Tuning the parameters of a PID controller is very important in PID control, Ziegler-Nichols method also used to tune the coefficients of a PID controller. The compensation has been proposed to be 4%, 6%, 8%, 10% and 15% of the actual load.
This paper evaluates the feasibility of using the Particle Swarm Optimization (PSO) method for determining the optimal PID controller parameters for steam turbine speed control. The PSO optimization technique is compared with Ziegler-Nichols method and (PID) controllers. It is validated that PSO based controller is more efficient in reducing the steady-states error, settling time, rising time, and overshooting limit in speed control of the steam turbine control. In which the maximum peak overshoot has been reduced from 44.8% in case of the original system without any controller to 3.45% for the case of PSO based controller and that for 15% load change.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Al Farahidi University / Aeronautical Technical Engineering Department