Full Text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Elicitation through abiotic stress, including chemical elicitors like heavy metals, is a new technique for drug discovery. In this research, the effect of heavy metals on actinobacteria Streptomyces sp. SH-1312 for secondary metabolite production, with strong pharmacological activity, along with pharmacokinetics profile, was firstly investigated. The optimum metal stress conditions consisted of actinobacteria strain Streptomyces sp. SH-1312 with addition of mix metals (Co2+ + Zn2+) ions at 0.5 mM in Gause’s medium. Under these conditions, the stress metabolite anhydromevalonolactone (MVL) was produced, which was absent in the normal culture of strain and other metals combinations. Furthermore, the stress metabolite was also evaluated for its anti-oxidant and cytotoxic activities. The compound exhibited remarkable anti-oxidant activities, recording the IC50 value of 19.65 ± 5.7 µg/mL in DPPH, IC50 of 15.49 ± 4.8 against NO free radicals, the IC50 value of 19.65 ± 5.22 µg/mL against scavenging ability, and IC50 value of 19.38 ± 7.11 µg/mL for iron chelation capacity and the cytotoxic activities against PC3 cell lines were recorded with IC50 values of 35.81 ± 4.2 µg/mL after 24 h, 23.29 ± 3.8 µg/mL at 48 h, and 16.25 ± 6.5 µg/mL after 72 h. Further mechanistic studies have revealed that the compound MVL has shown its pharmacological efficacy by upregulation of P53 and BAX while downregulation of BCL-2 expression, indicating that MVL is following apoptosis in varying degrees. To better understand the pharmacological properties of MVL, in this work, the absorption, distribution, metabolism, excretion, and toxicity (ADMET) were also evaluated. During ADMET predictions, MVL has displayed a safer profile in case of hepatotoxicity, cytochrome inhibition and also displayed as non-cardiotoxic. The compound MVL showed good binding energy in the molecular docking studies, and the results revealed that MVL bind in the active region of the target protein of P53 and BAX. This work triumphantly announced a prodigious effect of heavy metals on actinobacteria with fringe benefits as a key tool of MVL production with a strong pharmacological and pharmacokinetic profile.

Details

Title
Stress Driven Discovery of Natural Products From Actinobacteria with Anti-Oxidant and Cytotoxic Activities Including Docking and ADMET Properties
Author
Syed Shams ul Hassan 1   VIAFID ORCID Logo  ; Ishaq Muhammad 1 ; Syed Qamar Abbas 2 ; Mubashir Hassan 3 ; Majid, Muhammad 4 ; Hui-Zi, Jin 1 ; Bungau, Simona 5   VIAFID ORCID Logo 

 Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; [email protected] (S.S.u.H.); [email protected] (I.M.); Department of Natural Product Chemistry, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China 
 Department of Pharmacy, Sarhad University of Science and Technology, Peshawar 25000, Pakistan; [email protected] 
 Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore 54000, Pakistan; [email protected] 
 Department of Pharmacy, Capital University of Science and Technology, Islamabad 44000, Pakistan 
 Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania; [email protected] 
First page
11432
Publication year
2021
Publication date
2021
Publisher
MDPI AG
ISSN
16616596
e-ISSN
14220067
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2596043356
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.