Full Text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The sequence-to-sequence model is a widely used model for dialogue response generators, but it tends to generate safe responses for most input queries. Since safe responses are unattractive and boring, a number of efforts have been made to make the generator produce diverse responses, but generating diverse responses is yet an open problem. As a solution to this problem, this paper proposes a novel response generator, Response Generator with Response Weight (RGRW). The proposed response generator is a transformer-based sequence-to-sequence model of which the encoder is a pre-trained Bidirectional Encoder Representations from Transformers (BERT) and the decoder is a variant of Generative Pre-Training of a language model-2 (GPT-2). Since the attention on the response is not reflected enough at the transformer-based sequence-to-sequence model, the proposed generator enhances the influence of a response by the response weight, which determines the importance of each token in a query with respect to the response. Then, the decoder of the generator processes the response weight as well as a query encoding to generate a diverse response. The effectiveness of RGRW is proven by showing that it generates more diverse and informative responses than the baseline response generator by focusing more on the tokens that are important for generating the response. Additionally, the proposed model overwhelms the Commonsense Knowledge-Aware Dialogue generation model (ConKADI), which is a state-of-the-art model.

Details

Title
Strong Influence of Responses in Training Dialogue Response Generator
Author
So-Eon Kim; Lim, Yeon-Soo
First page
7415
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2564639713
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.