Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Biosensors draw inspiration from natural chemosensing based on molecular switches between different bond-induced conformational states. Proteins and nucleic acids can be adapted into switch-based biosensors with a wide plethora of different configurations, taking advantage of the variety of transduction systems, from optical to electrochemical or electrochemiluminescence, as well as from nanomaterials for signal augmentation. This review reports the latest trends in conformational switch biosensors reported in the literature in the last 10 years, focusing on the main representative and recent examples of protein-based switching biosensors, DNA nanomachines, and structure-switched aptamers being applied for the detection of a wide range of target analytes with interest in biomedical and agro-environmental sectors.

Details

Title
Structural Changes as a Tool for Affinity Recognition: Conformational Switch Biosensing
Author
Scognamiglio, Viviana  VIAFID ORCID Logo  ; Antonacci, Amina
First page
1209
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20734352
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2716521008
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.