Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

To design gas sensors with fast response speed and high sensitivity for the detection of volatile organic compounds, a stacked MEMS sensor was designed in this study. It utilizes porphyrin-sensitive materials and carbon nanotubes to form composite materials, improve the thermal stability of sensitive materials, and conduct sensor gas sensitivity testing. The results show that the design of the thermal insulation structure makes the sensor obtain lower power consumption and more uniform temperature distribution, and the maximum deformation variable is 3.7 × 10−2 μM. Doping carbon nanotubes in porphyrin-sensitive materials can effectively improve their thermal stability, and the sensor is in a safe state at temperatures below 358 °C. The sensor with higher response recovery characteristics at a low concentration of 80 ppm aniline has better response recovery characteristics, with a response time of 33 s and a recovery time of 23 s, respectively; its response recovery characteristics to 1% high concentration ethanol gas are good, with a recovery time of 13 s and a sensitivity of 1.05. In the analysis of the sensor image characteristics, when the Euclidean distance threshold is set to five, four gases such as aniline and formaldehyde can be classified. The sensor designed in this study can effectively detect four gases, including aniline and formaldehyde.

Details

Title
Structural Design and Preparation Process Research of Stacked MEMS Gas Sensors for Volatile Organic Compound Gases
Author
Wu, Guizhou 1 ; Wu, Junfeng 1 ; Dong, Juan 2 ; Zhang, Xinyu 3 

 School of Measurement and Communication Engineering, Harbin University of Science and Technology, Harbin 150080, China 
 School of Electronics and Information Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China 
 He Harbin Power Plant Valve Company Limited, Harbin 150000, China 
First page
2554
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
22279717
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2869552259
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.