Full text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Progressive encoding and transmission, i.e., a crucial technical foundation of 3D Web Geographic Information Systems (WebGIS), addresses the contradiction between massive 3D building data and limited network transmission capacity. Most progressive encoding algorithms, taking vertices, edges or triangles as encoding units, may break the inherent geometric and topological characteristics of 3D building models. Thus, a novel 3D building model encoding method that can maintain the internal characteristics is proposed, which can be used for high-efficiency progressive transmission. With this method, each building is decomposed into three types of fundamental structures: main structure, independent structure and attached structure. A structural topology graph (STG) was constructed based on the connections among structures. Guided by STG, one or more structures were wrapped as the smallest incremental transmission unit, denoted as transmission node. When requested, the real-time position of viewpoint, orientation and visual importance of nodes are used to pick up expected nodes for responding. The results confirm that the proposed method can better maintain the geometric and topological characteristics while encoding 3D building models. While serving for transmission, the proposed method not only effectively reduces the transmission load, but also provides users with a better consistency experience on the building appearance at different simplification levels.

Details

Title
Structure-Level 3D Building Model Encoding Method for Progressive Transmission
Author
Dong, Jiwei 1 ; Tan, Junzhong 1 ; Zhao, Qiang 1 ; He, Lixia 1 ; Li, Sirui 1 ; She, Jiangfeng 2   VIAFID ORCID Logo 

 Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, Key Laboratory for Land Satellite Remote Sensing Applications of Ministry of Natural Resources, School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China; [email protected] (J.D.); [email protected] (J.T.); [email protected] (Q.Z.); [email protected] (L.H.); [email protected] (S.L.) 
 Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, Key Laboratory for Land Satellite Remote Sensing Applications of Ministry of Natural Resources, School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China; [email protected] (J.D.); [email protected] (J.T.); [email protected] (Q.Z.); [email protected] (L.H.); [email protected] (S.L.); Jiangsu Center for Collaborative Innovation in Novel Software Technology and Industrialization, Nanjing University, Nanjing 210023, China 
First page
306
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
22209964
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2532402540
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.