Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The construction industry, responsible for approximately 30% of global carbon emissions, is closely linked to national development, making carbon reduction challenging. While national development is of paramount importance, it is essential to prioritize individual projects and establish a direction for reducing carbon emissions. The starting point should involve calculating the carbon emissions for each project and comprehending their quantitative impact. In this study, we calculated the carbon emissions for a small river maintenance project aimed at disaster prevention in the construction industry in Yongin-si, Gyeonggi-do, Korea. The total carbon emissions generated by the small river maintenance project in the target area amounted to 2016.6 tonCO2. By process, the embankment construction was responsible for 789.7 tonCO2, while the revetment construction contributed 1226.9 tonCO2. The analysis revealed that the carbon emissions generated by the small river maintenance project equated to 10.2 tonCO2/km of river length. Additionally, we developed an equation by applying the double-log function model (log–log) to small river length and carbon emissions. The coefficient of determination for the calculation equation is 0.42, which may not yield highly precise results. However, it is believed that this equation will provide a rough estimate of the carbon emissions associated with the small river maintenance project.

Details

Title
Study on the Calculation Method of Carbon Emissions in the Construction Industry: Targeting Small River Maintenance Projects in Korea
Author
Song, Youngseok 1   VIAFID ORCID Logo  ; Park, Moojong 2 ; Joo, Jingul 3 

 Department of Fire and Disaster Prevention, Konkuk University, Chungju 27478, Republic of Korea; [email protected] 
 Department of Aeronautics and Civil Engineering, Hanseo University, Seosan 31962, Republic of Korea; [email protected] 
 Department of Civil Environmental Engineering, Dongshin University, Naju 582452, Republic of Korea 
First page
3608
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20734441
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2882852098
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.