Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

We investigated the effective use of cross-flow wind turbines for small-scale wind power generation to increase the output power by using a casing, which is a kind of wind-collecting device, composed of three flow deflector plates having the shape of a circular-arc airfoil. Drag-type vertical-axis wind turbines have an undesirable part of about half of the swept area where the inflow of wind results in low output performance. To solve this problem, we devised a casing consisting of three flow deflector plates, two of which were to block the unwanted inflow of wind and the remaining flow deflector plate having an angle of attack with respect to the wind direction to increase the flow toward the rotor. In this study, output performance experiments using a wind tunnel and numerical fluid analysis were conducted on a cross-flow wind turbine with three flow deflector plates to evaluate the effectiveness of the casing on output performance improvement. As a result, it was confirmed that the casing could improve the output performance of the cross-flow wind turbine by approximately 60% at the maximum performance point and could also maintain the output performance about 50% higher compared to the bare cross-flow wind turbine without the casing within a deviation angle of ±10 degrees, even when the casing direction was inclined against the wind direction due to changes in wind direction.

Details

Title
A Study on a Casing Consisting of Three Flow Deflectors for Performance Improvement of Cross-Flow Wind Turbine
Author
Tanino, Tadakazu 1 ; Yoshihara, Ryo 2 ; Miyaguni, Takeshi 3 

 Department of Mechanical Engineering, National Institute of Technology, Kurume College, 1-1-1 Komorino, Kurume 830-8555, Japan 
 Interdisciplinary Graduate School of Engineering Sciences Kyushu University, 6-1 Kasuga-koen, Kasuga 816-8580, Japan 
 Department of Mechanical Systems Engineering, University of Kitakyushu, 1-1 Hibikino, Wakamatsu-ku, Kitakyushu 808-0135, Japan 
First page
6093
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
19961073
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2706198324
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.