Full text

Turn on search term navigation

Copyright © 2022 Muhammad Izz Z. Azhar Muzafar et al. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The Internet of Things (IoT) for healthcare can improve patient monitoring more effectively, especially since the occurrence of the novel coronavirus (COVID-19) disease in 2019. Integrating sensors with long range (LoRa) technology, which provides long-range, low-power, and secure data transmission, can ensure better patient treatment and disease surveillance. This study is aimed at evaluating and understanding the LoRa performance as the wireless platform in IoT health monitoring. The MH-ET Live MAX30102 sensor is used to measure blood oxygen saturation and pulse rate, while TTGO LoRa32 SX1276 is used as the wireless platform. Results show that to obtain accurate readings from the sensor, users must be in rested condition, place their fingertip onto the sensor properly for a few moments without any movement, and use the body part of the fingertip only. In outdoor environment tests in the suburban area, the LoRa SX1276 transceiver’s performance for the line-of-sight (LoS) transmission shows that the signal-to-noise ratio (SNR) and RSSI recorded at 1300-meter distance are -6.5 dB and -118 dBm, respectively. Non-line-of-sight (NLoS) test shows that LoRa still communicates with each other after eight blocks of houses with an approximate displacement of 240 meters apart between the modules, with RSSI and SNR values of -113 dBm and -5.42 dB, respectively. The analysis using LoRa Modem Calculator Tool proved the theoretical performances and effectiveness of LoRa communications.

Details

Title
A Study on LoRa SX1276 Performance in IoT Health Monitoring
Author
Muhammad Izz Z Azhar Muzafar 1   VIAFID ORCID Logo  ; Aiffah Mohd Ali 1   VIAFID ORCID Logo  ; Zulkifli, Safiah 1   VIAFID ORCID Logo 

 School of Aerospace Engineering, Universiti Sains Malaysia, Engineering Campus, 14300 Nibong Tebal, Pulau Pinang, Malaysia 
Editor
Jose M Lanza-Gutierrez
Publication year
2022
Publication date
2022
Publisher
John Wiley & Sons, Inc.
e-ISSN
15308677
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2730156934
Copyright
Copyright © 2022 Muhammad Izz Z. Azhar Muzafar et al. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.