Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This study examines the mechanical performance, deformability properties and rheological properties of a newly developed waterborne epoxy resin (WER)-modified emulsified asphalt (WE/A) binder for micro-surfacing. Two types of WER, semi-flexible and rigid, were used to modify the binder. Furthermore, the modification mechanism was investigated using the fluorescent microscope test and the scanning electron microscope (SEM). In addition, the pavement performance at micro-surfacing was studied using the wet wheel wear resistance test, the pendulum friction test and the slurry rutting test. The results indicated that with a small content (<15%) of WER in WE/A, WER existed as a continuous structure (cellular membrane wrapped around asphalt bubbles), thereby enhancing its high temperature properties and mechanical properties. Meanwhile, it also improved the cohesion properties of the transition interface between the aggregate and asphalt (enhanced by at least 30.0%) and the rutting resistance (improved by about 55.3–63.8%). In addition, WER could also improve the peeling resistance and water damage resistance of the micro-surfacing.

Details

Title
Study on Modification Mechanism and Performance of Waterborne Epoxy Resin Micro-Surfacing
Author
Huang, Shaolong 1 ; Fan, Jin 2 ; Chen, Dongdong 2 ; Xiao, Qiang 1 ; Ding, Qingjun 2 

 School of Materials Science and Engineering, Hubei University, Wuhan 430062, China 
 School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China 
First page
504
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20796412
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2791606569
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.