Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The self-heating and high-power microwave (HPM) effects that can cause device heating are serious reliability issues for gallium nitride (GaN) high-electron-mobility transistors (HEMT), but the specific mechanisms are disparate. The different impacts of the two effects on enhancement-mode p-gate AlGaN/GaN HEMT are first investigated in this paper by simulation and experimental verification. The simulation models are calibrated with previously reported work in electrical characteristics. By simulation, the distributions of lattice temperature, energy band, current density, electric field strength, and carrier mobility within the device are plotted to facilitate understanding of the two distinguishing mechanisms. The results show that the upward trend in temperature, the distribution of hot spots, and the thermal mechanism are the main distinctions. The effect of HPM leads to breakdown and unrecoverable thermal damage in the source and drain areas below the gate, while self-heating can only cause heat accumulation in the drain area. This is an important reference for future research on HEMT damage location prediction technology and reliability enhancement.

Details

Title
Study of Self-Heating and High-Power Microwave Effects for Enhancement-Mode p-Gate GaN HEMT
Author
Qin, Yingshuo  VIAFID ORCID Logo  ; Chai, Changchun; Li, Fuxing; Liang, Qishuai  VIAFID ORCID Logo  ; Wu, Han; Yang, Yintang
First page
106
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
2072666X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2621331733
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.