Full text

Turn on search term navigation

© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

An alternative approach for the synthesis of styrene butadiene rubber (SBR) copolymer latexes was explored in order to obtain low gel fractions and high solid contents. The ultra-turrax-assisted miniemulsion stabilized by in situ surfactant generation was adopted as the main strategy since this technique can inhibit the eventual presence of secondary nucleation producing polybutadiene particles and also control the cross-linking degree. Styrene monomer was first miniemulsified using an ultra-turrax and in situ generated surfactant using either hexadecane (HD) or octadecyl acrylate (ODA) as the hydrophobe. Dynamic light scattering (DLS) measurements of droplet size indicated faster stabilization and the production of smaller droplet diameters ca. 190 nm (PdI = 0.08) when employing in situ generated potassium oleate (K-Oleate) in comparison to SDS-based miniemulsions. High butadiene-level SBR latexes with ca. 50% solids content, a glass transition temperature (Tg) of −52 °C, and a butadiene to styrene weight ratio of 75:25, were then obtained using the miniemulsion droplets as seeds. Turbiscan and DLS measurements revealed a very stable resulting latex with SBR particle diameter of ca. 220 nm and a low polydispersity index (PdI). Secondary nucleation was prevented as indicated by the low Np/Nd value. Cryo-TEM images showed a narrow distribution of particle size as well as the absence of agglomeration. The gel content was below 10% when tert-dodecyl mercaptan (t-DM) was used as chain transfer agent (CTA).

Details

Title
Styrene-Butadiene Rubber by Miniemulsion Polymerization Using In Situ Generated Surfactant
Author
Medeiros, Anderson M S  VIAFID ORCID Logo  ; Bourgeat-Lami, Elodie  VIAFID ORCID Logo  ; McKenna, Timothy F L  VIAFID ORCID Logo 
First page
1476
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
20734360
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2419919024
Copyright
© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.