Full Text

Turn on search term navigation

© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Superfunctional materials are defined as materials with specific properties being superior to the functions of engineering materials. Numerous studies introduced severe plastic deformation (SPD) as an effective process to improve the functional and mechanical properties of various metallic and non-metallic materials. Moreover, the concept of ultra-SPD—introducing shear strains over 1000 to reduce the thickness of sheared phases to levels comparable to atomic distances—was recently utilized to synthesize novel superfunctional materials. In this article, the application of ultra-SPD for controlling atomic diffusion and phase transformation and synthesizing new materials with superfunctional properties is discussed. The main properties achieved by ultra-SPD include: (i) high-temperature thermal stability in new immiscible age-hardenable aluminum alloys; (ii) room-temperature superplasticity for the first time in magnesium and aluminum alloys; (iii) high strength and high plasticity in nanograined intermetallics; (iv) low elastic modulus and high hardness in biocompatible binary and high-entropy alloys; (v) superconductivity and high strength in the Nb-Ti alloys; (vi) room-temperature hydrogen storage for the first time in magnesium alloys; and (vii) superior photocatalytic hydrogen production, oxygen production, and carbon dioxide conversion on high-entropy oxides and oxynitrides as a new family of photocatalysts.

Details

Title
Superfunctional Materials by Ultra-Severe Plastic Deformation
Author
Edalati, Kaveh 1   VIAFID ORCID Logo 

 WPI, International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, Fukuoka 819-0395, Japan; [email protected]; Mitsui Chemicals, Inc.—Carbon Neutral Research Center (MCI-CNRC), Kyushu University, Fukuoka 819-0395, Japan 
First page
587
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
19961944
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2767253074
Copyright
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.