Full Text

Turn on search term navigation

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The directed assembly of molecular building blocks into discrete supermolecules or extended supramolecular networks through noncovalent intermolecular interactions is an ongoing challenge in chemistry. This challenge may be overcome by establishing a hierarchy of intermolecular interactions that, in turn, may facilitate the edification of supramolecular assemblies. As noncovalent interactions can be used to accelerate the reaction rates and/or to increase their selectivity, the development of efficient and practical catalytic systems, using supramolecular chemistry, has been achieved during the last few decades. However, between discrete and extended supramolecular assemblies, the newly developed “colloidal tectonics” concept allows us to link the molecular and macroscopic scales through the structured engineering of colloidal structures that can be applied to the design of predictable, versatile, and switchable catalytic systems. The main cutting-edge strategies involving supramolecular chemistry and self-organization in catalysis will be discussed and compared in this review.

Details

Title
Supramolecular Chemistry and Self-Organization: A Veritable Playground for Catalysis
Author
Douyère, Grégory  VIAFID ORCID Logo 
First page
163
Publication year
2019
Publication date
2019
Publisher
MDPI AG
e-ISSN
20734344
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2547526822
Copyright
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.