Full text

Turn on search term navigation

Copyright © 2019, Hu et al.; licensee Beilstein-Institut. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Biological applications of core/shell near-infrared quantum dots (QDs) have attracted broad interest due to their unique optical and chemical properties. Additionally, the use of multifunctional nanomaterials with near-infrared QDs and plasmonic functional nanoparticles are promising for applications in electronics, bioimaging, energy, and environmental-related studies. In this work, we experimentally demonstrate how to construct a multifunctional nanoparticle comprised of CdSe/ZnS QDs and gold nanorods (GNRs) where the GNRs were applied to enhance the photoluminescence (PL) of the CdSe/ZnS QDs. In particular, we have obtained the scattering PL spectrum of a single CdSe/ZnS QD and GNR@CdSe/ZnS nanoparticle and comparison results show that the CdSe/ZnS QDs have an apparent PL enhancement of four-times after binding with GNRs. In addition, in vitro experimental results show that the biostability of the GNR@CdSe/ZnS nanoparticles can be improved by using folic acid. A bioimaging study has also been performed where GNR@CdSe/ZnS nanoparticles were used as an optical process for MCF-7 breast cancer cells.

Details

Title
Surface plasmon resonance enhancement of photoluminescence intensity and bioimaging application of gold nanorod@CdSe/ZnS quantum dots
Author
Hu Siyi; Ren, Yu; Wang, Yue; Li, Jinhua; Qu Junle; Liu, Liwei; Ma Hanbin; Tang, Yuguo
University/institution
U.S. National Institutes of Health/National Library of Medicine
Pages
22-31
Publication year
2019
Publication date
2019
Publisher
Beilstein-Institut zur Föerderung der Chemischen Wissenschaften
e-ISSN
21904286
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2174083710
Copyright
Copyright © 2019, Hu et al.; licensee Beilstein-Institut. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.