Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The surge is a typical aerodynamic instability phenomenon in the compression system, which can lead to serious consequences such as engine performance degradation and structural damage. A deep understanding of the surge process can support the development of a compressor with a wider operating range. In this paper, an experimental study was carried out and high-responding pressure sensors were used to obtain the aerodynamic instability process and the post-surge characteristics of an axial–centrifugal compressor at design and off-design speeds. The evolution of the flow field and instability behavior before and after the surge were analyzed. The results showed that the inlet temperature change can reflect the aerodynamic instability to some extent, and as the operating condition moves from the choke to surge boundary, the inlet temperature undergoes a sudden increase at a certain condition and further increases with the decrease in mass flow rate. At the design speed, the instability of the combined compressor featured a deep surge with an obvious rotating stall behavior before its inception, and the amplitude of the stall cell was gradually enhanced, finally leading to the surge. At the off-design speed, affected by the stage mismatching, the axial stage mainly worked near the unstable operating condition. Therefore, the compressor successively experiences two modes of mild surge and deep surge, and the rotating stall can also be observed during the surge cycle.

Details

Title
Surge Process of a High-Speed Axial–Centrifugal Compressor
Author
Li, Jiaan 1 ; Wang, Baotong 2 ; Zheng, Xinqian 1 

 School of Vehicle and Mobility, Tsinghua University, Beijing 100084, China; [email protected] 
 Institute for Aero Engine, Tsinghua University, Beijing 100084, China; [email protected] 
First page
2869
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
22279717
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2882606002
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.