Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This survey article is concerned with the emergence of vision augmentation AI tools for enhancing the situational awareness of first responders (FRs) in rescue operations. More specifically, the article surveys three families of image restoration methods serving the purpose of vision augmentation under adverse weather conditions. These image restoration methods are: (a) deraining; (b) desnowing; (c) dehazing ones. The contribution of this article is a survey of the recent literature on these three problem families, focusing on the utilization of deep learning (DL) models and meeting the requirements of their application in rescue operations. A faceted taxonomy is introduced in past and recent literature including various DL architectures, loss functions and datasets. Although there are multiple surveys on recovering images degraded by natural phenomena, the literature lacks a comprehensive survey focused explicitly on assisting FRs. This paper aims to fill this gap by presenting existing methods in the literature, assessing their suitability for FR applications, and providing insights for future research directions.

Details

Title
A Survey of Deep Learning-Based Image Restoration Methods for Enhancing Situational Awareness at Disaster Sites: The Cases of Rain, Snow and Haze
Author
Karavarsamis, Sotiris  VIAFID ORCID Logo  ; Gkika, Ioanna  VIAFID ORCID Logo  ; Gkitsas, Vasileios  VIAFID ORCID Logo  ; Konstantoudakis, Konstantinos  VIAFID ORCID Logo  ; Zarpalas, Dimitrios  VIAFID ORCID Logo 
First page
4707
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2686180395
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.