It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Image captioning task is highly used in many real-world applications. The captioning task is concerned with understanding the image using computer vision methods. Then, natural language processing methods are used to produce a description for the image. Different approaches were proposed to solve this task, and deep learning attention-based models have been proven to be the state-of-the-art. A survey on attention-based models for image captioning is presented in this paper including new categories that were not included in other survey papers. The attention-based approaches are classified into four main categories, further classified into subcategories. All categories and subcategories of the attention-based approaches are discussed in detail. Furthermore, the state-of-the-art approaches are compared and the accuracy improvements are stated especially in the transformer-based models, and a summary of the benchmark datasets and the main performance metrics is presented.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer