Full Text

Turn on search term navigation

© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Experimental evidence of swirling effects in 3D trajectories of in-flight particles is presented based on static and dynamic footprints analysis as a function of stand-off distance of Al2O3 deposited employing a Metco-9MB torch. Swirling effects were validated with a proprietary computational fluid dynamics (CFD) code that considers an argon-hydrogen plasma stream, in-flight particles trajectories, both creating the spray cone, and particle impact to form a footprint on a fixed substrate located at different distances up to 120 mm. Static and dynamic footprints showed that swirl produces a slight deviation of individual particle trajectories and thus footprint rotation, which may affect coating characteristics.

Details

Title
Swirling Effects in Atmospheric Plasma Spraying Process: Experiments and Simulation
Author
Martínez-Villegas, Israel; Mora-García, Alma G  VIAFID ORCID Logo  ; Ruiz-Luna, Haideé  VIAFID ORCID Logo  ; McKelliget, John; Poblano-Salas, Carlos A; Muñoz-Saldaña, Juan  VIAFID ORCID Logo  ; Trápaga-Martínez, Gerardo
First page
388
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
20796412
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2392105825
Copyright
© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.